JMockit nauomated tesing oot forsava

Mocking

ypes and instances

qument matching
¥ reference
s passed through a vara rameter
straints

classes and instances
ied impler
or for furu

© Expectations © verifications

© strictExpectations © verificationsInorder 8 © Fullverifications [© FullverificationsInOrder

&) Invocation

In the JMockit library, the Expectations AP| provides rich support for the use of mocking in automated developer tests. When
mocking is used, a test focuses on the behavior of the code under test, as expressed through its interactions with other
types it depends upon. Mocking is typically used in the construction of isolated unit tests, where a unit under test is
exercised in isolation from the implementation of other units it depends on. Typically, a unit of behavior is embodied in a
single class, but it's also fine to consider a whole set of strongly-related classes as a single unit for the purposes of unit
testing (as is usually the case when we have a central public class with one or more helper classes, possibly package-
private); in general, individual methods should not be regarded as separate units on their own.

Strict unit testing, however, is not a recommended approach; one should not attempt to mock every single dependency.
Mocking is best used in moderation; whenever possible, favor integration tests over isolated unit tests. This said, mocking is
occasionally also useful in the creation of integration tests, when some particular dependency cannot have its real
implementation easily used, or when attempting to create tests for corner cases where a well-placed mocked interaction
can greatly facilitate the test

An interaction between two classes always takes the form of a method or constructor invecation. The set of invocations
from a tested class to its dependencies, together with the argument and return values passed between them, define the
behavior of interest for the tests of that particular class. In addition, 2 given test may need to verify the relative order of
execution between multiple invocations.

Mocked types and instances

Methods and constructors invoked from the code under test on a dependency are the targets for mocking. Mocking provides
the mechanism that we need in order to isolate the tested code from (some of} its dependencies. We specify which
particular dependencies are to be mocked for a given test (or tests) by declaring suitable mock frelds and/or mock
parameters; mock fields are declared as annotated instance fields of the test class, while mock parameters are declared as
annotated parameters of a test method. The type of the dependency to be mocked will be the type of the mock field or
parameter. Such a type can be any kind of reference type: an interface,a class (including abstract and final ones),an
annotation, or an enum.

By default, all non-private methods (including any that are static, final, or native) of the mocked type will be mocked
for the duration of the test. If the declared mocked type is a class, then all of its super-classes up to but not including
java.lang.0bject will also be mocked, recursively. Therefore, inherited methods will automatically be mocked as well Also
in the case of a class, all of its non-private constructors will get mocked.

When a methed or constructor is mocked, its original implementation code won't be executed for invocations occurring
during the test. Instead, the call will be redirected to IMockit so it can be dealt with in the manner that was explicitly or
implicitly specified for the test.

The following example test skeleton serves as a basic illustration for the declaration of mock fields and mock parameters,
as well as the way in which they are typically used in test code. In this tutorial, we use many code snippets Like this, where
the parts in bold font are the current focus of explanation.

// "Dependency” is mocked for all tests in this test class.
/f The "mockInstance” field holds a mocked instance automatically created for use in each test.
@Mocked Dependency mockInstance;

@Test
public void doBusinessOperationXyz(@Mocked fimal AmotherDependency anotherMock)

i

new Expectations() {{ // an "expectation block"

// Record an expectation, with a given walue to be returned:
mockInstance.mockedMethod(...); result = 123;

i3 H

/{ Call the code under test.

new Verifications() {{ // a "verification block"
/! Verifies an expected invocation:
anotherMock.savel(any); times = 1;

HH

For a mock parameter declared in a test method, an instance of the declared type will be automatically created by JMockit
and passed by the JUnit/TestNG test runner when it executes the test method; therefore, the parameter value will never be
null For a mock field, an instance of the declared type will be automatically created by IMockit and assigned to the field,

provided it's not final.

There are a few different annotations available for the declaration of mock fields and parameters, and ways in which the
default mocking behavior can be modified to suit the needs of a particular test. Other sections of this chapter go into the
details, but the basics are: @ Mocked is the central mocking annotation, having one optional attribute which is useful in
; [@Injectable is another mocking annotation, which constrains mocking to the instance methods of a single
ance; and @ Capturing is yet another mocking annotatien, which extends mocking to the cla implementing

a mocked interface, or the subclasses extending 2 mocked class. When ar is applied to a mock
field or mock parameter, is implied so it doesn't need to (but can) be applied as well

The mocked instances created by JMockit can be used normally in test code (for the recording and verification of
expectations), and/or passed to the code under test. Or they may simply go unused. Differently from other mocking APIs,
these mocked objects don't have to be the ones used by the code under test when it calls instance methods on its
dependencies. By default {ie, when is not used), IMockit does not care on which object a mocked instance
method is called. This allows the transparent mocking of instances created directly inside code under test, when said code
invokes constructors on brand new instances using the new operator; the classes instantiated must be covered by mocked
types declared in test code, that's all

Expectations

An expectation represents a set of invocations to a specific mocked method/constructor that is relevant for a given test. An
expectation may cover multiple different invocations to the same method or constructor, but it doesn't have to cover alf
such invocations that occur during the execution of the test. Whether a particular invocation matches a given expectation
or not will depend not only on the method/constructor signature but also on runtime aspects such as the instance on
which the method is invoked, argument values, and/or the number of invocations already matched. Therefore, several types
of matching constraints can (optionally) be specified for a given expectation.

When we have one or more invocation parameters involved, an exact argument value may be specified for each parameter.
For example, the value "test string" could be specified for a 5tring parameter, causing the expectation to match only
those invocations with this exact value in the corresponding parameter. As we will see later, instead of specifying exact
argument values, we can specify more relaxed constraints which will match whole sets of different argument values.

The example below shows an expectation for Dependency#someMethod{int, String), which will match an invocation to
this method with the exact argument values as specified. Notice that the expectation itself is specified through an isolated
invocation to the mocked method. There are no special APl methods involved, as is commaon in other mocking APIs. This
invocation, however, does not count as one of the Teal® invocations we are interested in testing. It's only there so that the
expectation can be specified.

@Test
public void doBusinessOperationXyz(EMocked final Dependency mockInstance)
L

new Expectations() {{
// Bn expectation for an instance method:
mockInstance.someMethod(1l, "test"); result = "mocked™;

11

// A call to code under test occurs here, leading to mock invecations
// that may or may not match specified expectations.

We will see more about expectations later, after we understand the differences between recording, replaying, and verifying
invocations.

The record-replay-verify model

Any developer test can be divided in at least three separate execution phases. The phases execute sequentially, one at a
time, as demonstrated below.

@Test
public void someTestMethod()

i

/f 1. Preparation: whatever is reguired before the code under test can be exercised.
/f 2. The code under test is exercised, usuwally by calling a public method.

/f 3. Verification: whatever needs to be checked to make sure the code exercised by
i the test did its job.

First, we have a preparation phase, where objects and data items needed for the test are created or obtained from
somewhere else. Then, code under test is exercised. Finally, the results from exercising the tested code are compared with
the expected results.

This model of three phases is also known as the Arrange, Act, Assert syntax, or "AAA" for short. Different words, but the
meaning is the same.

In the context of behavior-based testing with mocked types (and their mocked instances), we can identify the following
alternative phases, which are directly related to the three previously described conventional testing phases:

1. The record phase, during which invocations can be recorded. This happens during test preparation, before the
invocations we want to test are executed.
2.The replay phase, during which the mock invocations of interest have a chance to be executed, as the code under test
is exercised. The invocations to mocked methods/constructors previously recorded will now be replayed. Often there
isn't a one-to-one mapping between invocations recorded and replayed, though.
. The verjfy phase, during which invocations can be verified to have occurred as expected. This happens during test
verification, after the invocations under test had a chance to be executed.

Behavior-based tests written with JMockit will typically fit the following templates:

There are other variations to the above templates, but the essence is that the expectation blocks belong to the record
phase and come before the code under test is exercised, while the verification blocks belong to the verify phase. A test
method Can contain any number of expectation blocks, including none. The same i5 true for verification blocks.

The fact that anonymous inner classes are used to demarcate blocks of code allows us to take advantage of the ‘code
folding”* feature available in modemn Java |DEs. The following image shows what it Looks Like in Intellil IDEA.

public void createlrder() throws Exception
{

List<Orderitem> expecteditems = aslist|
new Qrderltem(”393439493", "Core Java 5 Ged”, 2, new BigDecimal ("453.00")),
new OrderItem(”04540458", "JUnit Recipes", 1, new BigDecimal ("49.5%5")));
final List<0rderItem> actualltems = new Arraylist 1H

new Expectationa()
new Expectationa() {{
order.getltems(); resnlt = actualltems;

new Verificationa()

assertNotRull (created);
assartEquals(expectedItens, actualltems);

Regular versus strict expectations

Expedations recorded inside a “new Expectations(} {...}" block are the regular ones. What this means is that the
imsomations they specify are expercted to ooour of leest omce during the reploy phase; they may ooour more than once, though,
and in a different order relative to other recorded expectations; additionally, imomtions that don't match amy recorded
expectation are allowed to ocour in any number and in any order. If no imsoation matches a given recorded expectation, a
‘missing imecation” error gets thrown at the end of the test, using it to fail (this is only the default behavior, though, as it
can be overridden).

The APl also supports the concept of strict expectations: those that, when recorded, only allow invoations during replay
that exactly match the recordings (withim explicitly specified allowances, when needed), both in the number of matching
immomations (exactly one, by default) and in the order they oocur. Invocations that ooour during replay but fail to match a
recorded strict expectation are regarded as wnexpected, Ausing an immediate unexpected invocation” emor, and
consequently failing the test. This is achieved by using the StrictExpectations subclass.

Mote that in the case of strict expedsations, all imvocations ocourring during replay that match recorded expectations are
implicitly verified_Any remaining imvocations that don't match an expectation are considered unexpected, causing the test
to fail The test will also fail if any recorded strict expectation i missed, ie, if no matching imvom@tions oocour during replay.

We can mix expectations of different levels of strictness in the same test by writing multiple expectation blodks, some
regular (using Expectations), others strict (using StrictExpectations). Mormally, a given mock field or modk parameter
will appear in expecation blocks of a single kind, though

Maost tests will simply make use of regular” expectations. U=sage of strict expectations is probably more a matter of personal
preference.

Strict and non-strict mocks

Mote that we do not specify that a given modked typefinstance should be strict or not. Instead, the stricmess for a given
miock field/parameter iz determined by how it i= used in the test. Once the first strict expectation is recorded in 2 “new
strictExpectations() {...}" blodk, the associated mocked type/fins@ance is considered to be strict for the whole test;
otherwize, it will be not strict.

Recording results for an expectation

For a given method with non-wedid return type. a retum value an be recorded throwgh an assignment to the result field.
When the method gets called in the replay phase, the specified returmn value will be returned to the caller The assignment
to result should appear right after the invecation that identifies the recorded expectation, inside an expecation blodc

If the test instead needs an exception or emor to be theowmn when the method is involed, then the result field can still be
used: simply assign the desired throwable instance to it Mote that the recording of exceptions/errors to be thrown s
applicable to mocked methods {of any retumn type) as well as to mocked constrechors.

Multiple consecutive results (values to retumn and/or throwables to throw) can be recorded for the same expectation, by
simply assigning the result field multiple times in a row. The recording of multiple retun values and,'or exceptions/ermors
to be thrown can be freely mixed for the =ame expectation. In the case of recording multiple consecutive retumn violues for a
given expectation, a single @Il o the returns{Object...} method an be made. Al=o, a single assignment to the result field
will achieve the same effect, if the value as=igned to it is a [or armoy containing the consecutive values.

The following example test records both types of results for the methods of a mocked Dependencylbe Class, to be wused
when they are invoked from a UnitinderTest class. Lets say the implementation of the class under test goes like this:

public class UnitUnderTest

1
(1}private final Dependencylbc abe = new Dependencyfbel);

public void doSomething()
i
(2} int n = abe.intReturningMethod();

For (Qmt & = 83 1 < a3 d+2) {
String s;

Ery {
5 = abc.stringReturningMethod();

}

cateh [SomelheckedException &) {
£ somehow handle the exception

1

S5 odo some other Stuff

A possible test for the doSemething() method could exercize the m@se where SeseCheckedExeept ion gets thrown, after an
arbitrary number of successful iterations. Assuming that we want (for whatever reasons) to record a cwmpiete set of
expectations for the interaction between these two classes, we might write the test below: (Often, it's not desiable or
important to specify all imvwocations to mocked methods and - specially - modked constructors ina given test. We will
address this issue later)

@Test
public woid doSomethingMandlesSomeCheckedException(@PMocked final Dependencylbs abe) throws Exception

new Expectations() {{
(1} new Dependencyibe();

(1) abc.intReturningMethod(); result = 3;

(1) abec.steingReturningMethod():
returns{~strl”, "str2");
result = new SomeCheckedException();
{3

new UnitUnderTest().doSomething():
}

Thiz test records three different expectations. The first one, represented by the @l to the Dependencysbe () construchor,
merely accounts for the fact that this dependency happens to be instantiated in the code under test through the no-args
constructor; no result needs to be specified for such an invocation, except for the occasional exception/emor to be thrown
[constructors hawve vald retum type, so it makes no sense to record return values for them). The second expectation
specifies that intReturningsethod() will return 3 when called. The third one specifies a sequence of three conseoutive
results for stringReturningMathod(), where the last result happens to be an instance of the desired exception, allowing
the test to achieve its goal (note that it will only pass if the exception is not propagated out).

Matching invocations to specific instances

Previously, we explained that an expectation recorded on a mocked instance, such as "abe . someMethad() ;" would actually
match im@tions to Dependencypibe lsoneMethod () on @y instance of the moded Dependencylbe class In most cases,
tested code uses a single instance of a given dependency, so this won't really matter and an be safely ignored, whether the
mocked instance is pessed info the code under test or created inside it But what if we need to verify that imeocations ooour
on a spedjic instance, between several ones that happen to be used in the code under test? Also, what if only one or a few
instances of the mocked class should achuslly be mocked, with other instances of the same class remaining unmaodied?
(This second case tends to ocour more often when classes from the standard lava libraries, or from other third-party
libraries, are modked.) JMockit provides a mocking annotation, . whiich will only modk one instance of the
mocked type, leaving others unaffected. Additionally, it provides a couple ways to constrain the mabching of expectations to
specific instances, while still modking ail instances of the mocked class.

Injectable mocked instances

Suppoze we need to test code which works with multiple instances of a given dlass, some of whidh we want to modc If an
instance to be modked can be passed or injected into the code under test, then we @n declare an (@injectable modk field or
mock parameter for it The instance created by JIMockit will be an exclusive” mocked instance; any other
instance of the same mocked type, unless obtained from a separate mock field/parameter, will remain as a regular, non-
mocked instance.

Mote also that, since having an injectable mocked instance is suppozed to affect the behavior of only that instance, statie
methods and constructors are atso excluded from being mocked. After all, a static method i not associated with any
instance of the class, while a constructor is only associated with a newly created (and therefore different) instance.

For an example, lets say we have the following class to be tested.

public final class ConcatenatingInputStrean extends IngutStrean

1
private final QueuvesIngutStreans sequentiallnputs:

private Input5tream currentInput;

public ConcatenatingInputitrean|InputStresm... sequentialInputs)

1
this._ zeguentialInputs = pew LinkedLIstU<InputSUreans:(Arrays.aslisti{sequentialInputs));

currentlnput = this.sequentiallnputs.poll]);
4
Elverride
public int read{) throws I0Exceptlion

if (currentIngut == null} return -1;
int nextByte = currentInput.read();

if (nextByte »= 8) {
return nextibyle;
}

currentInput = sequentialInputs.poll();
return read();

This class could easily be tested without modking by using ByteArrayInputStream objects for input, but lets say we want to
miake sure that the InputStresmiread() method is properly invoked on each input stream passed in the constructor. The
Tollowing test will achieve this.

ETest

public woid concatenatelnputstreans|
Elnjectable final Inputitrean Lnputl, @lnjectable final InputStream inputl)
throws Exception

1
new Expectations{) {4

inputl.read(}; returns(l, 2, -1);
Input2.read{); retuwrns(d, -1};
s

InputStrean concatenatedIngut = new ConcatenatinglnputStrean(inputl, inputl);

byte[] buf = new byte[3];
concatenatedlnput . read(but);

assertArrayEquals{new byte[] {1, 2, 3}, buf);

Mote that the use of is indeed necessary here, since the class under test extends the mocked class, and the
method called to exercize ConcatenatingInputStrean is actually defined in the base ImputStress class. If InputStream
was mocked normally’, the read{byte[]} method would always be modked, regardless of the instance on which it is called.

The onInstance{m) COnstraint

‘When using ar (and not on the same mock field/parameter), we can still match replay
imcations bo expectations recorded on specific moded instances. For that, we use the oninstance(mockObject) method
when recording the expectation, as the next example shows.

ETest
public vaid matchOnMockInstance(@Hocked final Collaborator mack)

new Expectations{) {4
onInstance(mock).getvalual); result = 132;

i

/f Exercise code under test with mocked instance passed from the test:
int result = mock.getValue();
assertEquals(12, result);

A I another instance is created inside code under test...
Collaborator another = new Enllahﬂratnr[}:

S oW won't get the recorded result, but the default one:
assertEquals(fd, another.getValuel));

The test above will only pass if the tested code (here embedded in the test method itself, for brevity) invokes getValue()
on the exact =ame instance on which the recording imvocation was made. This is typically useful when the code under test
makes calls on two or more different instances of the same type, and the test wants to verify that each invoation ocourred
on the proper instance.

To avoid the need to use enInstance{m) on every expectation when testing code which uses multiple instances of the same
type in different ways. JMockit automatically infers the need for ‘oninstance " matching based on the set of moded types in
scope. Specifically, whenever two or more mock fields/parameters of the exact same type are in scope for a given test.
imvocations to instance methods made on their instances will always match expectations recorded on those same
instances. Therefore, in such commaon situations it isn't necessary to explicitly use the enInstance(m) method.

Instances created with a given constructor

Specifically for fitwe instances that will later get created by code under test, |Modkdt provides a couple mechanisms
through which we can match invocations on them. Both mechanisms require the recording of an expectation ona specific
Constructor imoortion (3 “new” expression) of the mocked clas=.

The first mechanism involves simply using the new instance obtained from the recorded constructor expectation, when
recording expectations on instance methods_ Lets see an example.

ETest
public woid newCollaboratorsWithDifferentBeheviors(gMocked Collaborator anyCollaborator)
1
ff BRecord different behaviors for each setl of instances:
new Expectations{) {{
S5 One set, instandes Created with "a valuwa™:
Collaborator coll = new Enllahnratnr["a vﬁlu&"};
coll.doSonething{anyInt); result = 123

S5 Another set, instances created with "anothers walue™:
Collaborator coll = new Collaborator|”ansther value™);
col2. doSomething{anyInt); result = new InvalidStateException();

b

FF Code under test:
new Collaborator("a value”).doSomething(5); 7/ will return 123

new Collaborator("anether value™) doSomething(8); // will throw the exceptien

In the above test, we declare a single mock field or mock parameter of the desired class, using - This mock
field/parameter, however, is mot used when recording expectations; instead, we use the instances created on fnstontiation
recordings to record further expectations on instance methods. The future instances created with matching constructor
imyo@ations will map to those recorded instances. Also, note that it's not necessarily a one-to-one mapping, but a many-to-
one mapping, from potentially many fulure instances to a single instance used for recorded expecations.

The second mechanism lets us record & replorenrent instance for those future instances that match a recorded constructor
imvocation. With this altemative mechanism, we can rewrite the test as follows.

ETest
public woid newCollaboratorsWithDifferentBehaviors(
Erocked finmal Collaborator coll, @Mocked final Collaborator coll)
1
new Expectations{) {{
Ff Map separate sets of future instances To Separate mock parameters:
new Collaborator{"a value™}; result = coll;
new Collaborator("another value™); result = coll;

JF Record different behaviors for each set of instances:
coll. doSonething{anyInt); result = 123;
col2.doSomething{anyInt); result = new InvalidStateException();

b

§F Code under test:
new Collaborator{"a value”).doSomething(5); 7 will return 123

new Collaborator("another value™) doSomething(@8); // will throw the exception

Both versions of the test are equivalent. The second one also allows, when combined with partial mocking. for real (non-
mocked) instances to be used as replacements.

Flexible matching of argument values

In both the record and verify phases, an invocation to a moded method or constructor identifies an expectation. IF the
method/constructor has one or more parameters, then a recorded/verified expecation Like doSemething(1, "s*, true);
will only match an imvocation in the reploy phase if it has equael argument values. For arguments that are reqular objects
(mot primitives or arrays), the equals(0bject) method is used for equality checking. For parameters of array type, equality
checking extends to individual elements; therefore, two different armay instances having the same length in each dimension
and equal comresponding elements are considerad equal

In a given test. we often don't know exactly what those argument values will be, or they simply aren't essential for what is
being tested. So, to allow a recorded or verified invocation to match a whole set of replayed invocations with different
argument values, we @n specify flexible argumemt matching constroints instead of acual argument values. This is done by
using anyxyz fTalds and/for withiyz(. . .) methods The "any” fields and “with" methods are all defined in

mockit. Invacatdions, which is the base dlass for all the expecstionverification classes used in tests; therefore, they can be
usaed in expectation as well as verification blodks.

Using the "any” fields for argument matching

The mast common argument matching constraint tends also to be the [east restrictive one: to match imeocations with any
value for a given parameter [of the proper parameter type, of course). For such cases we have a whole set of spedial
argurnert matching ffeids, one for each primitive type (and the comesponding wrapper class). one for strings. and a
‘universal” one of type Object. The test below demonstrates soime wses.

@Test
public void someTestMethod(EMocked Final Dependencylbs abe)

final Dataltem item = new Dataltem(...);

new Expectations{} {{
£F Will match "voldMethod(String, LIST)" invocations where the first argument s
£F any steing and the second any List.
abe . woldMethod{anyString, (List<?>) any);

TYi
new UnitUnderTest().doSomethingiiten);

new Verifications{) {{
ff Matches Invocations to the specified method with any wvalue of type long or Long.
abe _anothervoldMethod { anyLlong) ;

1¥;

Uses of "any” fields must appear at the actual argument positions in the imvocation statement, never before. You can still
hawe regular argument values for other parameters in the same invocation, though. For more details, see the AP
documentation.

Using the *with® methods for argument matching

‘When recording or verifying an expeciation, calls to the withiyz(. ..) methods can ooour for any subset of the arguments
paszed in the imvocation. They can be freely mixed with regular argument-passing (using Literal values, local variables, etc).
The only requirement is that such m@lls appear inside the recorded,fverified invocation statement, ather than before it Its
not possible, for example, to first assign the result of a @il to withNetEqual({val) to a local variable and then use the
variable in the invocation statement An example test using some of the “with™ methods is shown below:

@Test
public void someTestMethod(@Mocked final Dependencylbs abe)

final Dataltem item = new Dataltem(...);

new Expectations{) {{
S Will match "voldMethod(String, List)"” invocations with the first argument
¢ egual to "ste” and the second not null.
abec . wobdMethod{ "str”, (List<?>) withMotMull(}};

fF Will mateh invecations Lo DependencyfbclstringReturningMethed{Dataltem, String)
ff with the first argument polnting to "item” and the second one containing “xyz".
abe._stringheturningMethed (withSaneInstance{item), withSubstring(xyz")});

b
few UnitUnderTest(). doSemething(iten);
new Verifications{) {{

S Hatches invocations to the specified method with any Llong-valuwed argument.
abe . anothervVeldMethod (withAny (1L)] ;

TYi

There are more “with™ methods than shown above. See the AP| documentation for more detalls.

Besides the several predefined argument matching constraints available in the APL JModkit allows the user to provide
custom constralings, through the with{Delegats) and withArgThat{Matcher] methods.

Using the null value to match any object reference

‘When using at least one argument matching method or field for a given expectation, we @n use a shortcut”™ to specify that
any object reference should be accepted (for a parameter of reference type). Simply pass the null value instead of a
withany(x) or amy argument matcher. In particular, this avoids the need to cast the value to the declared parameter type.
However, bear in mind that this behavior is only applicable when of leest one exqplicit argument matcher (either a “with™
method or an "any ™ field) is used for the expedation. When passed in an invocation that uses no matchers, the aull value
will match only the null reference. In the previous test, we could therefore have written:

ETest
public void someTestMethod(@Mocked final Dependencydlbec abo)

1

new Expectations{) {{
abe . voldMethod{ anyString, nAull);

To specifically verify that a given parameter receives the null reference, the withMull]) matcher c@n be used.

Matching values passed through a varargs parameter

Ocasionally we may need to deal with expectations for "varargs” methods or construchors. It's valid to pass regular values
as a varargs argument, and afse valid to use the “with”any” matchers for such values Howewver, it's mod valid to combine
both kinds of value-pas=sing for the same expectation, when there is a varargs parameter. We need to either use anty regular
values or omly values ocbizined through argument matchers.

In case we want to match invocations where the varargs parameter receives amy number of values (including zero), we an
specify an expectation with the “{dbject[]) any™ constraint for the final varargs parameter.

Specifying invocation count constraints

5o far, we saw that besides an associated method or constructor, an expectation can have imvocation resulis and argument
mabchers. Given that code wnder test can mll the same method or constructor multiple times with different or identical
arguments, we sometimes need a way to account for all those separate invocations

The number of invocations expected and/or allowed to match a given expedsation @n be specified through imeocation
oount constraints. The modking AP provides three spedal fields just for that: times, minTimes, and maxTimes. These fields
can be used either when recording or when verifying expedations. In either case, the method or constructor associated
with the expectation will be constrained to receive a number of invocations that falls in the specified rmnge. Amy
imspcations less or more than the expeced lower or upper limit. respectively, and the test execution will automatically fail
Lets see some example tests.

@Test
public vaid someTestMethad{@EMocked final Dependencylle abe)

1
new Expectations{) {{

SF By default, at least one invocation is ewpected, f.e. "minTimes = 1%:
few Dependencyfbe () ;

SrOAL least twoe Invocations are expected:
abe _voldMethod]); minTimes = 2;

S 1 to 5 immocations are expected:
abe . stringReturningMethed(); minTimes = 1; maxTimes = 5

T¥s

new UnitUnderTesty).doSomething();

ETest
public void someOtherTestMethod(@Hocked fimal DependencyAbc abc)

new UnitUnderTest().doSomething();

new Verifications() {{
Sf Verifies that zero or one invocations eccurred, with the specified argument value:
abe. anothervoldMethod (1) ; maxTimes = 1;

Sf Verifies the occurrence of at least one invacation with the specified arguments:
DependencyAbc. someStaticHethod(“test”, false}; /7 “mninTimes = 1" is implied
3H
}

Unlike the result field, each of these three fields can be specified at most once for a given expectation. Any non-negative
imteger value is valid for any of the imvocation count constraints. If tises = @ or moxTimes = @ is specified, the first
imvocation matching the expecation to coour during replay (if any) will cause the test to fail

Explicit verification

Besides specifying imvomation count constraints on recorded expectations, we @n also verify matching imvocations
explicitly in a verjfioriion blodk, giter the call to the code under test. This i valid for regular expedtations, but not for strict
expectations, since they are always verified imyplicitly; there i no point in re-verifying them in a ecplicit verification block

Inside a “new Verifications() {...}" blockwe can use the mme APl thats available in a “new Expectations() {...}"
block, with the exception of methods and fields used to record return values and thrown exceptions/ermors. That s, we @n
frealy use the anyXyz fields, the withiyz(...}) argument matching methods, and the times, minTines, and maxTines
imvoation oount constraint fields. An example test follows.

@Test
public void verifyInvocationsExplicitlyAtEndOfTest(@Mocked Final Dependency mock)

/f Nothing recorded here, though Lt could be,

Ff Inside tested code:
Dependency dependency = new Dependency();
dependency . doSomething(123, true, ~abe-xyz");

£ Verifies that Dependency¥doSomething{int, boolean, String) was called at least once,
Ff with arguments that obey the specified constraints:
new Verifications() {{ mock.doSosething(anyInt, true, withPrefix{“abc")); }};

Mote that, by default, a verification checks that of legst ome matching invoecation eoourred during replay. When we need to
werify an exact number of invocations (including 1), the tises = n constraint must be specified.

Verifying that an invocation never happened

To do this inside a werification blodk, add a "times = 8" assignment right after the invocation that is expected to not hawve
happened during the replay phase. If one or more matching invocations did happen, the test will fail

Verification in order

Regular verification blodks created with the Werifieations class are umordersd. The actual relative order im which
aMethad() and anotherMethod () were alled during the replay phase i= not verified, but only that each method was
executed at least once. If you want to verify the relative order of imvoations, then a “new VerificationsIndeder() {...1"
block must be used instead. Inside this block, simply write invocations to one or more mocked types in the order they are
expected to have ccourred.

ETest
public void verifyingExpectationsInOrder(@ocked final DependencyAbe abc)

Sf SoRewhere Inside the tested code:
abe . aMethod();

abe . doSomething("blah", 121);

abe . anotherMethod(5) ;

new VerificationsInOrderi) {{
ff The order of these invocations must be the same as the order
ff of occurrence during replay of the matching inwocations.
abe.aMethod();
abe.anotherMethed{anyInt);
I H
}

Mote that the call abe . doSomethdng(...) was nof verified in the test, so it could have oocurred at any time {or not at all).

Partially ordered verification

Suppose you want to verify that a particular method {or constructor) was called before/after other imeocations, but you don't
care about the order in which those other invocations ocourred. Inside an ordered wverification blod, this an be achieved by
simiply calling the unverifiedlnrocations() method at the appropriate place(s). The following test demonstrates it

EMocked DependencyAbc abc;
EMocked AnotherDependency xyz;

ETest
public void verifyingThelrderOfSoneExpectationsRelativeToAll0thers()

new UnitUnderTest]). doSomething():

new VerificationsIndrder() {{
abe _methodThatNeedsTeExecuteFirst]);
unucrifi:dlm:ntims{]j JF Invocations not verified must come here. ..
syz _methodiy) ;
abe _nethod2() ;
urverifiedInvecations{}; // ... andfor here,
syz nethodThatNeedsTeExecutelast();

The example above is actually quite sophisticated, as it verifies several things: a) a method that must be called before
others; bj a method that must be called after others; and c) that AnotherDependencylimethodl() must be called just before
Dependencysbeimethod2 (). In most tests, we will probably only do one of these different kinds of order-related
verifications. But the power is there to make all kinds of complex verifications quite easily.

Another situation not covered by the examples above is one where we want to verify that certain imvocations ocourred ina
given relative order, while also verifying the other imvocatio any order). For this, we need to write two separate
verification blodks, as ilustrated below (where mock is a modk field of the test class)

ETest
public woid wverifyFirstAndLastCallsWithOthersInBetweenInAnyOrder()

£ Inwocations that occur while exercising the code under test:
mock . prepare();

mock . setSomethingElsel "anotherValue™);

mock . setSomnething{123);

mock .notifyBeforesavel);

mock . save();

new VerificationsInOrder() {{
mock .prepared); J/ first expected call
urverifiedInvecations(); // olhers ab this point
mock . notifyBeforeSavel}; /7 Just before last
mock . save(); times = 1; /7 last expected call

F;

#4 Unordered werificetion of the Invocations previously left unwerified.
#f Could be ordered, but then It would be simpler to just Include these invocations
£ in the previous block, at the place where "unverifiedInwocations{}” is called.
new YVerifications{) {{

mock . setSonething(123);

mock .setSonethingElse(anyString);

F;

Usually, when a test has multiple verification blodks their relative order of execution is important In the previous test, for
excample, if the unordered blodk came before it would have Lleft no "unverified ieocations™ to match a later call to
unverifiedInvocations(); the test would still pass {@ssuming it originally passed) since it's not required that urwerified
imvoations actually ccourred at the called position, but it would not have verified that the unordered group of invecations
occurred betwean the first and last expected calls.

Full verification

Sometimes it may be important to have ail imvocations to the moded types involved in a test verified. This is automatically
the case when recording strict expectations, since any unexpected invocation causes the test to fRILWhen regular
expectations are explicitly verified, though, a “new FullVerifications(}) {...} block can be used to make sure that no
imvocations are left unverified.

ETest
public woid verifyAllInvocations(@Hocked final Dependency mock)
1

£F Code under test included here for easy reference:

mock . setSonething{121);

mack . setSomethingElse("anotherValue™)

mock . setSonething{45);

mack . save(]);

new FullVerifications{) {{
S Werifications here are unordered, so the following Invocations could be in any order.
mock . setSonething{anyInt); Ff verifies twoe adtuwal Invocations
mock . setSomethingElse(anyString);
mock.save(); /7 if this verification {or any other abowe) is removed the test will fail
1hs

Mote that if a Lower Limit (@ minimum invocation count constraint) is specified for an expecation, then this constraing will
always be implicitly verified at the end of the test. Therefore, explicitly verifying such an expectation inside the full
verification block is not neces=ary.

Full verification in order

5o, wwe have seen how to do unordered verifications with Verifications, ordered verifications with VerificationsInDrder,
and full verific@ations with Fullverifications. But what about fill ordered verifications? Easy enough:

ETest
public woid verifyAllInvecationsInOrder{@ocked final Dependency mock)
1

#f Code under test included here for easy reference:

mock . SetSonething{123);

mack LetSonethingE lsal "anotherValue™);

mock . SsetSonething{45);

mack . save()

new FullVerificationsInOrder() {{
mock . setSonething{anyInt);
mock . setSonethingEloe| anyString) :
mock . setSomething(anyInt);
mock . savel)

T

MNotice there is a not so obvious difference in semantics, thoughe In the verifyaAllInvocations test abowve, we were able to
miatch two separate mock . setSomethingy . . .) invocations with a single invocation in the verification blodc In the
wverifyAllInvocations Indrder test, however, we had to write two separate imvocations to that method inside the block, in
the proper order with respect to other invocations.

Restricting the set of mocked types to be fully verified

By default, ail imvocations to all mocked instances,types in effect for a given test must be verified exgplicitly when using a
“new Fullverifications(} {} or new FullvVerificetionsInOrder() {}" blodc Now, what if we hawve a test with two [or
miore) mocked types but we only want to fully verify invocations to one of them [or to any subset of mocked typeas when
miore than two)? The answer is to use the FullVerifications{modedTypesAndlnstancesToVerify) construchor, where only the
given modcked instances and moded types (ie. class objects/literals) are considered. The following test provides an
example.

ETest
public woid verifyAllInvecationsToOnlyOnedfTwoMockedTypes(

EMocked fFimal Dependency mockl, @Hocked AnotherDependency mock2)
1

£ Inside code under test:
mockl . preparel) ;

mack] . setSonething{123);
mack2. doSonething() ;

mackl . editABunchMoreStuf+();
mockl. save(]

new FullVerifications{mockl) {{
mockl. prepare]);
mockl.setSomething(anyInt);
mockl . editaBunc hMoreStuff();
mockl.save(); times = 1;

Ti

In the test abowve, the mock?. doSonething() invocation is never verified.

To restrict verification only to the methods/‘constructors of a single mocked class, pass the class literal to the
Fullverifications(...) or FullverificationsInOrder(...) constructor. For example, the few
FullVerificationsInDrder(AnotherDependency.class) { ... } blodkwould only make sure that all imvocations to the
mocked AnotherDependency class were verified.

Verifying that no invocations occurred

To verify that no imvo@tions at all ocourred on the mocked typesfinstances used in a test, add an empty full verification
block to it As abways, note that any expectations that were recorded as expected through a specified times /minTimes
constraint are verified implicitly and therefore disregarded by the full verification block; in such a s=e the empty
verification blodk will verify that no affter imwoemations coourred. Additionally, if any expectations were verified in a previous
verification blodk in the same test, they are also disregarded by the full verification block

IF the test uses two or more mocked types/instances and you want to verify that no invocations oocurred for some of them,
specify the desired mocked types andfor instances in the constructor to the empty verification blodc An example test
Tollows.

ETest
public void verifyMoInvocationsOnOnelfTwoMockedDependenc lesBeyondThoseRecordeddsExpected(
EMocked final Dependency mockl, @Mocked final AnotherDependency mock2)

new Expectations() {{
Ff These two are recorded as expected:
mockl. setSomething(anyInt);
mock2. doSonething }; times = 1;

b

£f Inside code wnder test:
mockl_prepare();
mockl . setSomnething{1};
mackl . setSonething{2);
mackl.sawe():

mack2_ doSonething()

#f Will werify that no invocations other than o "doSomething()” eccurred on mock2:
new FullWerifications({moeck2) {};

Verifying unspecified invocations that should not happen

A full verification block {ordered or not) also allows us to verify that certain methods and/or constructors never get imvoked,
without hawing to record or verify each one of them with a coresponding times = 8 assignment. The following test
provides an example.

ETest
public void readOnlyDperation(@Mocked Final Dependency mock)
i

new Expectations() {{
mock.getDatal); result = “test data™;

Jf Code under test:
String data = meck.getData();
'y Iﬂtll..!i.ah'l!{:l should nat be called here

new FullVerifications() {{
mock.getDatad); minTimes = @; ff calls to getData() are allowed, others are nol

T

If a call to any method (or constructor) of the Dependency class ooours during the replay phase, esccept for the ones
explicitly werified in the verification block [DependencydgetDatal) in this case), then the test above will fail On the other
hard, it may be easier to use strict expectations in such cases, without any verification block at all.

Capturing invocation arguments for verification

Imvocation arguments can be captured for later verification throwgh a set of spedial “withCaptwre(. . .)" methods. There are
three different cases, each with its own specific capturing method: 1) verification of arguments passed to a mocked
method, in a single invocation: T withCapture(); 7) verification of arguments passed to a modked method, in multiple
imeocations: T withCapture(List«Ts); and 3) verification of arguments passed to a modked constructor: List«T>
withfapture(T).

Capturing arguments from a single invocation

To @apture arguments from a single imsocation to a mocked method or constructor, we use “withCapture (), as the
follorwring examiple test demonstrates.

ETest
public wvoid capturingargumentsFronsinglelnvocation(@Mocked Final Collaborater mock)

#f Inside tested code:
new Collaborator).doSomething(8.5, new SAt[2], "test"):

new Verifications() {{
double d;
String s
nock _doSonething(d = withCapture(), null, s = withCapture());

assertTrue(d » 8.8);
assertTrue(s. length(} » 1);
Hh
b

The withCapture(] method can only be used in verifiction blodks. Typically, we wuse it when a single matching invocation is
expected to ocour; if more than one such invocation oocurs, howeyer, the last one to ocour oversrites the values captured
by previous ones. It is particularly useful with parameters of a complex type (think a JPA). which may contain
several items whose values need to be checked.

Capturing arguments from multiple invocations

If muttiple imvomations to a modied method or constructor are expected, and we want to capture values for all of them, then
the withCapture(List) method should be used instead, as in the example below.

ETest
public veid capturingargumentsFromMultipleInvocations(@Mocked final Collaborator mock)

mock . doSomething(datalbjectl);
mock . doSomething{datadbject2);

new Verifications{) {{
List<DataObjects datadbjects = new Arraylistes();
mock . doSonething (withCapture(datadbjects));

assertEquals (2, datadbjects.size()):

DataDbject datal = databbjects.get(@);

DataDbject datal = databbjects.get(l);

£ Perform arbitrary assertions on datal and dataz.

Differently from withCapture(), the withCapture(List) overload can also be used in expectation recording blocks.

Capturing new instances

Finally, we an capture the new instances of a modked class that got created during the test.

ETest
F.IDJJ.IE woid Eﬂptur‘illﬂ“&w‘.{ﬂ&tﬂl’lﬂ&ﬁI:ﬂ"l.".kl:‘l.‘l Person rI'I'J-CkEdP'EI“SI:Ir'I:I
1

JF From the code wnder tesi:

dao.create(new Persond "Paul™, 18)):

dao.create(new Person “Mary™, 15)):

dao.create(new Person"Joe", 28));:

new Verifications() {{
S Captures the new instances created with a specific constructor.
List<Person: personsInstantiated = with{apture]new PersonanyString, anyInt)):

Ff Now captures the instances of the same Lype passed to a method.
List<Persony personsCreated = new Arraylistes();
dao _create(withCapture|personsCreated)) ;

Ff Finally, wverifies both 1ists are the same.
assertEquals{personsInstantiated, personsCreated);

Delegates: specifying custom results

We have seen how to record results for imvemations through assignments to the resul € field or @lls to the returns(...)
method. We have also seen how to match invocation arguments flexibly with the withiyz(. ..} group of methods and the
various anyXyz fields. But what if a test needs to decide the result of a recorded imeocation based on the arguments it will
receive at replay time? We can do it through a Delegate instance, a= exemplified beloe:

ETest
public void delegatingInvocationsToACustonDelegate(@Mocked final Dependencyfbc anyAbc)

i

new Expectations{) {4
anyAbe . intReturningMethodi anyInt, null);
result = new Delegate) {
int aDelegateMethed(int i, String s)

return & == 1 7 & : s.length{);

}
b
Hi

JF Calls te "IntReturningMethod{int, Steing)" will execute the delegate method above.
new UnitUnderTest]). deSomething()

The Delegate interface is empty, being used simply to tell IModkit that actual invocations at replay time should be
delegated to the "delegate” method in the assigned object. This method can have any name, provided it is the only non-
private method in the delegate object. As for the parameters of the delegate method, they should either match the
parameters of the recorded method, or there should be none_In any @se, the delegate method is allowed to have an
additional parameter of type Invocation as its first parameter. (The Invecation object received during replay will provide
acres=s to the invioked instance and the acual invocation arguments, along with other abilities) The return type of a
delegate method doesn't have to be the same as the recorded method, although it should be compatible in order to avoid a
ClassCastException later.

{Constructors can also be handled through delegate methods. The following example test shows a constructor imocation
being delegated to a method which conditionally throws an exception.

@Test
public waid delegatingConstructorInvocations(EMocked Collaborator anyCollaboratorInstance)

new Expectations{) {{
new Collaborator{anyInt);
result = new Delegate() {
void delegate{int i) { if (i ¢ 1) throw new IllegalArpumentException(); }

b
4 H

ff The first Instantiatiom using "Collaborator(int)™ will execute the delegate abowe.
new Collaborator(d);

Cascading mocks

‘When using complex APls where functionality is distributed through many different objects, it is not unosmmon to see
chained imvocations of the form ab{l. getobiz(.. .). get¥etAnotherobj(). doSomething(. . .). In such cases it may be
necessary to mock 3ll objects/classes in the chain, s@Erting with abjL

All three mocking annotations provide this ability The following test shows a basic example, using the §ava.net and
Java.nio APls.

@Test

public veid recordindVerifyExpectationsOnCascadedMocks|
EMocked Socket anySocket, ff will match any new Socket object created during the test
EMocked final SocketChannel cascadedChamnel /7 will match cascaded instances

) throws Exception

1
new Expectations{) {{
ff Calls to SocketdgetChannel() will automatically return a cascaded SocketChannel;
Ff such an instance will be the same as the second mock parameter, allowing us to
Ffouse It for expectations that will match all <ascaded channel instances:
cascadedChannel . isConnected(); result = false;

1k

Jf Inside production code:
Sacket =k = new Socket(); /S mocked as “anySocketr”
SocketChannel ch = sk.getChannel(); ¢/ mocked as "cascadedChannel”

if (lch.isConnected()}
SocketAddress 2 = new InetSocketAddressy”remotedost™, 123);
ch.connectisa);

I

InetAddress adrl sk.getInetAddress(); #/ returns a newly created InetAddress LAnstance
InetAddress adrd sk.getlocalAddress(); 7/ returns another new instance

#F Back Ln test code:
new Verifications() {{ cascadedChannel.conmecti(SocketAddress) withMotMulli(}): }}:

In the test above, calls to eligible methods in the mocked Saeket class will return a crscaded mock object whenever they
occur during the test The ascaded mock will allow further cascading. so @ null reference will never be obtained from
methods which retum object references (except for non-eligible retumn types Object or String which will returm null, or
collection types which will retumn a non-mocked empty collection).

Unless there is an available mocked instance from a mock field/parameter (such as ¢ascadedChennel above], a new
cascaded instance will get created from the first @il to each mocked method. In the example above, the teo different
methods with the same InetAddress retum type will oreate and return different @scaded instances; the same method will
always return the same @scaded instance, though,

Mew casraded instances are created with semantics, so as to not affect other instances of the ame type that
may exist during the test.

Fimally, it's worth noting that, if necessary, cascaded instances can be replaced with non-mocked ones, with a different
mocked instance, or not be returned at all; for that, record an expectation which azsigns the result field with the desired
instance to be retwmed, or with null if no such instance is desired.

Cascading static factory methods

Cascading is extremely useful in scenarios where a mocked class contains static firctory methods. In the following example
test, lets say we want to mock the javax . faces. context. FacesContext class from J5F Java EE).

@Test
public void postErrorMessageTolIForInval idInputFields(@Mocked final FacesConbext Jif)

1
Ff Set up Invalid inguts, somehow.

J¢f Code under tect which wallidates input fields from a JSF page, adding
Jf error messages o the 15F context in case of wvalldation fallures.
FacesContext ctx = FacesContext.getCurrentInstance();

if (some input is Tmvalig) {
ctx.addMessage{null, new FacesMessapge("Input xyz is invalid: blah blah...”});

Jf Test code: verlfy appropriate error message was added to context.
new Verifications() {{

FacesMessage msg;

Juf . addMessage{null, msg = withCapture());

assertTrue(msg. getSummary (). contains("blah blah"});

1k

‘What's interesting in the test above is that we never have to wormy about FacesContext. getCurrentInstance(). as the “jaf"
mocked instance gets automatically returmed.

Cascading self-retuming methods

Another scenario where cascading tends to help is when oode under test uses a “fluent interface’, where a “builder” ohject
returns itself from most of its methods. 5o, we end up with a method @l chain which produces some final object or state.
I the example test below we mock the java. lang. ProcessBul lder class.

ETest
public waid createdSProcessTolopyTempFiles(@Mocked final ProcessBuilder pb) throws Exception

{f Code under test creates a new process to execute an 05-specific command.

String cmdline = "copy /¥ *.txt D:\\TEAP";

File wrkDir = pew File("C:\\TEMP™);

Process copy = new ProcessBuilder().connand{cmdline). directory(wrkDir). inheritT0]) start(};
int exit = copy.waitFor();

A Werify the desired process was created with the correct command.
new Verifications{) {{ pb.command(withSubstring(“copy™)).start(); }};

Above, methods commandf . . .), directory(. ..).and inheritI0]}) configure the process to be created, while start() finally
creates jt. The mocked process builder object automatically retumns it=elf ("pb”) from these m@lls, while also returming a new
miocked Process from the @Il to start().

Partial mocking

By default, all methods and constructors which can be called on a mocked type ond its super-types (except for

1 get mocked. This is appropriate for most tests, but in some situations we might need to select only
certain methods or constructors to be mocdked. Methodsmonstructors not mocked inan otherwize mocked type will execute
normally when @lled.

When a class or object is partially mocked, JMockit decides whether to execute the real implementation of a method or
constructor as it gets called from the code under test, based on which expectations were recorded and which were not. The
following example tests will demonstrate it

pabilis eladi PurtlalMeckiagTect
wtatic class Collaborator
final int value;

Collaborator() { value = =1;)
Collaborator{int value) { thit.valor = value; }

Ent getValued} { return valoe; |
final boolean ilmplelperation(int a, String b, Date ¢) { retwm troe; }
; static vold dolomething(boaless &, String i) { throw sew Tllegalftatefzception(); }

et

?#Ili wald partlallyMeckingafisiulndltilactancecd)
final Collaborator anylnitance « ma Collaborator]);:

fw Dapectatlond|Callaberaber. ¢ladd) {{
angIndtance, getvaluel): reialt « 123
1

Al RSt mocked, af 6 cdmitrudlor eapeclallont wine redoerded:
Collaborator ¢l « fw Dol labsrater]);
Collaborator 2 = i Dol laborator|15);

A Mocked, @i 2 matihing eelhexd eapeclatlon wai reddrded:
aiserilquale(1l), <l.getvalue());
aniertlqualef12), €. petvalos());

A Rt socked:
aiiertTrus{cl, ilmpledoeration(l, &%, Aulll);:
siiertlqualeldl, new Collaborstor(4%), value);

}

ETest

?lhll: wald partlallpMeckinghlinglelnttonce])

final Collaborator collabsrator « mpw Collabaratar(l);

mgu Dapectatlons{callaberator) {{
cellaborator, getValoel) reiult = 123
cellaborater, slapledperation(, *=, mull}; result =

S Statlc methods fan be dynamlcally secked foo.
v Cal laborater, dabime thing [soyBoclean, “Leil™);

£ Mekend;

aidertiqualal 1), allatrator, getaluell);
aisertFaliefcal laborator . s inpledperatlon{l, ==, mall}];
Collaborator, dofmethling(tree, “test™);

i el mddked

aiierilgualell, collaborator . value):
sitertiqualelal, new Collaborstor(d%), getValue(});:
sisertiguale]-1, new Collaborstor]). geiValue());

Ad g aborve, the Exp Bjecy) conRrudier BICepl o of mane cliied oF sihjects 1o ba partially mocked W 5
Class object is given, all methods and constructors defined in that class can be mocked, 25 well 2 the methods and
CoPSTnuCtnes of i super-classes; olf inarances of the mpecified clees will be regarded a5 moCeed Ferances. . on che other
hand, a regulsr insfonoe | given, then only methods, not constnactons, in the class hisranchy can be mocked, even mone, only
izt particular irectance will be mocoed

Mozice that in these e Example tegny thene i Ao Mmook Reld o motk parsmeter. The pemnial macking conmrstsr
effectively provides yet another wary to specify modaed types. it also lets us tum objects stoned in food variobles into
macked iFdTRENORL Such objecEs Can b Created with By amount of TINTe in irmerrs] ircmence Nedds vy will kesp Chat mace
wien modosd.

it should be mobed that, when we request 2 class o iInstanoe to be partlally modied, it cn also ks invocations venified on
it v, B the verified methodtonatnaciors were ndt rcorded. For example, congider the following best

ETest
public void partiallyMockingAnObjectIustForverifications()
i

final Collaborator collaborator = few Collaborator(123);
fnew Expectations(collaborator) {};

£ No expectations were recorded, so nothing will be mocked.
int walue = collaborator.getValue(); // value == 123
collaborator. simpledperation(45, “testing™, new Date(});

S5 Unmocked methods can still be verified:
riew Verifications() {{ cl.simpleOperation{anyInt, anyString, (Dete) any); }};

Finally, a simpler way to apply partial mocking to a tested class is to hawve a field in the test dass annotated as both
(see zection below) and .In this case, the tested object is not passed to the Expectations constructor, but
we still need to record expectations on any methods requiring mocked results.

Capturing implementation classes and instances
Qwr discussion of this feature will be based on the [ontrived) code belovw.

public interface Service { int doSomething(); }
final elass ServiceImpl implements Service { public int doSomething() { return 1; } }

public final class Testedinil

private final Service servicel = new ServiceImpl();
private final Service servicel = new Service() { public int doSomething{) { return 2; } };

publie int businessOperation()

return servicel.doSomething() + servicel . doSomething():

The method we want to test, businessOperation(). uses classes that implement a separate interface, Service. One of these
implementations is defined through an anonymous inner class, which is completely inaccessible (except for the use of
Reflection) from client code.

Mocking unspecified implementation classes

Given a base type (be it an interface, an abstract class, or any sort of base cass), we can write a test whidh only knows
about the base type but where all implementing/extending implementation dlasses get mocked_ To do so, we declare a
“capturing” mocked type which refers only to the knman base type Mot only will implementation classes already loaded by
the WM get mocked, but also any additional classes that happen to get loaded by the IVM during later test execution. This
ability i= activated by the {@{Capturing annotation, which can be applied to mock fields and mock parameters, as
demaonstrated beloma.

public final class UnitTest

{
Elapturing Service anyService;

ETest
public woid mockingImplementationClassesFromAGivenBaseType()

new Expectations() {{ anyService.doSomething(); returns(3, 4); thH
int result = new TestedUnit().busiressOperationd):

assertEquals(7, result);

In the test abowve, two return values are specified for the ServiceddoSomething() method This expectation will match all
imwpcations to this method, regardless of the actual instance on which the invocation oocurs, and regardleszs of the actual
class implementing the method.

Specifying behavior for future instances

An additional ability related to capturing applies to fidure instances assignable to the moded type, and is activated
through the "maxInstances” optional atribute. This attribute takes an int value specifying the modmum number of future
instances of the mocked type that should be cowered by the associated mock field/parameter; when not specified, all
assignable instances, both pre-existing and to be created during the test, are covered.

The expectations recorded and/for verified on a given capturing mock field or parameter will match invoations to any of
the future instances covered by the mock field,/parameter. This allows us to record and/or verify different behavior for each
set of future instances; for that, we declare two or more capturing mock fields/jparameters of the same declared type, each
with it= own maxInstances value (except perhaps for the last modk field/fparameter, which would then cover the remaining
future instances).

For the sake of demonstration, the following ewample test takes control of §ava . nie.Buffer subclaszes and their future
instances; in a real test it would be preferable to use real buffers rather than modked ones.

ETest

public woid testWithDifferentBehaviorForFirstMewInstanceAndRenaliningNewIncetances |
@lapturing(maxInctamnces = 1) final Buffer firstMewBuffer,
Elapturling fimal Buffer remalningNewBuffers)

new Expectations{) {{
firstHewBuffer, position); result = 18;
remalningNewBuffers.position(); result = 2@;

+h

S§ Code under test creates several buffers. ..
ByteBuffer bufferl = DyteBuffer.allocate]1s8);

IntBuffer bufferl = IntBuffer_wrap(pew int[] {1, 2, 3})
= CharBuffer wrapl” =}

CharBuffer bufferl

ff ... and eventually read thelr positiens, getting 18 for
Af the first buffer created, and 28 for the r\emaining ones .
assertEquals(18, bufferl.position())
assertEquals(28, bufferl.position())
assertEquals(28, bufferd.position]))

It showld be noted that while a capturing modoed type is in scope, ol implementation classes will get mocked, regardless
of any ‘maxInstances” Limits that may have been specified.

Instantiation and injection of tested classes

Typically, a test class will exercise a single tested closs. IModkit can help by automatically instantiating this class, and
optionally injecting the relevant mocked dependencies. This is what the {@Tested annotation is for

A non-final instance field annotated as such in the test class will be considered for automatic instantiation and injection,
just before the execution of a test method. If at this time the field still holds the null reference, an instance will be created
using a suitable constructor of the tested class, while making sure its internal dependencies get properly injected {when
applicable). If the field has already been initialized (not Aull), then nothing will be done.

For injection to be performed, the test class must also comtain one or more mock fields or mock paremeters declared to be

- M fields/parameters annotated only with are mot considered for injection. On the
other hand. mot all injectable fields/parameters need to have modkabils types: they can also have primitive or arngy types.
The following excample test class will demonstrate.

public class SomeTest

@Tested CodelnderTest tested;

@EInjectable Dependency depl;

@Injectable AnotherDependency dep;
@Injectable int someIntegralProperty = 123;

@Test
public void someTestMethod(@Injectable(true™) boolean flag, @lnjectable(Mary™) String name)

fF Record expectations on mocked types, if needed.
tested.exerciselodelnderTest();

[Verify espectations on mocked types, i required.

Note that a mon-mockable infjectable field/parameter must have a value explicitly specified to it. otherwise the default
value would be used. In the case of an injectable ffeid, the value can simply be assigned to the field Alternatively. it can be
provided im the "valuee” attribute of . which iz the only way to specify the value in the @=e of an injecable test
method parameter.

Two forms of injection are supported: constructor injection and fleld injection. In the first case, the tested class must have a
constructor which can be satisfied by the injectables made available in the test class. Mote that for a given test, the set of
available injectables consists of the set of injectable fields declared as instances fields of the test class plus the set of
injectable parameters declared in the test method; therefore, different tests in the same test class an provide different
sets of injectables fior the same tested class.

Once the tested class is initialized with the chosen constructor, its non-final instance fields are considered for injection.
For each such field to be injected, an injectable field of the same type is searched in the test class. If only one is found, its
current walue is read and then stored in the injected field. If there is more than one, the injected field name is used to
select between the injectable fields of same type.

i&at halp from tha Iockit Lkers Growp or Stack Ovarflowe.

